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1
PROGRAMMABLE INTEGRATED CIRCUIT
WITH DPA-RESISTANT DECRYPTION

TECHNICAL FIELD

The disclosure generally relates to securely configuring a
programmable integrated circuit.

BACKGROUND

Programmable logic circuits are integrated circuits (ICs)
that are user configurable and capable of implementing digi-
tal logic operations. There are several types of programmable
logic 1Cs, including Complex Programmable Logic Devices
(CPLDs) and Field Programmable Gate Arrays (FPGAs).
CPLDs include function blocks based on programmable logic
array (PLA) architecture and programmable interconnect
lines to route and transmit signals between the function
blocks. FPGAs include configurable logic blocks (CLBs)
arranged in rows and columns, input output blocks surround-
ing the CLBs, and programmable interconnect lines that route
and transmit signals between the CLBs. Each CLB includes
look-up tables and other configurable circuitry that are pro-
grammable to implement logic functions. The function
blocks of CPLDs and FPGAs and interconnect lines are con-
figured by data stored in a configuration memory of the
respective devices.

Designs implemented in programmable logic have become
complex. Due to the time and investment required for design
and debugging, it is desirable to protect such designs from
unauthorized copying. Efforts have been made to encrypt
designs and provide the encrypted designs to the target
devices. Several encryption algorithms, for example, the stan-
dard Data Encryption Standard (DES) and the more secure
Advanced Encryption Standard (AES) algorithms, are known
for encrypting blocks of data. Additionally, a one-time
encryption pad may be used as a cipher for encrypting blocks
of data by XORing (exclusive ORing) blocks of data with
blocks of the one-time pad (OTP). These approaches require
provision of a key, corresponding to the particular encryption
algorithm, and the key must be protected from unauthorized
discovery.

A decryption key can be stored in nonvolatile memory of a
programmable integrated circuit. An encrypted bitstream can
then be loaded into the IC and decrypted using the key within
the programmable logic. This prevents an attacker from read-
ing the bitstream as it is being loaded into the programmable
logic IC. However, this structure must also protect from
modes of attack in which the attacker attempts to obtain the
decryption key stored in the programmable IC. If the attacker
obtains the decryption key, the attacker can decrypt an inter-
cepted bitstream to reveal the unencrypted design.

One method through which an attacker may attempt to
discover the decryption key is known as power analysis. In a
power analysis attack, the amount of current used by a device
is monitored while the device is decrypting the bitstream.
During normal operation, the amount of current, and there-
fore power, used by a device varies depending on the logic
gates activated at a given time. By monitoring variations in
the power consumption while the device is decrypting a con-
figuration bitstream, the attacker can identify decryption
operations performed and determine the decryption key. In
another type of attack, an attacker attempts to guess a key,
password, or authentication code using many trial-and-error
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attempts. The attacker may attempt to determine the key value
or force the device to accept tampered data as if it were
legitimate.

SUMMARY

A method of configuring a programmable integrated cir-
cuit (IC) includes inputting encrypted configuration data to
the programmable IC. The encrypted configuration data is
stored in configuration memory of the programmable IC. The
configuration memory programs configurable logic of the
programmable IC. The method determines whether or not the
encrypted configuration data is authentic. In response to the
encrypted configuration data being authentic, the encrypted
configuration data is read from the configuration memory and
decrypted into decrypted configuration data. The decrypted
configuration data is then stored back in the configuration
memory.

A circuit includes a configuration memory and a configu-
ration control circuit coupled to the configuration memory.
The configuration control circuit is configured to input a
configuration bitstream. An authentication circuit is coupled
to the configuration control circuit and is configured to input
the configuration bitstream and to calculate an expected
digest from a public key and signature in the configuration
bitstream. A hash calculation circuit is coupled to the con-
figuration control circuit and is configured to input the con-
figuration bitstream and to calculate an actual digest from
encrypted data in the configuration bitstream. A decryptor
circuit is coupled to the configuration control circuit. The
configuration control circuit is further configured to store the
encrypted configuration data in the configuration memory,
and to determine whether or not the encrypted configuration
data is authentic based on the expected digest and the actual
digest. In response to the encrypted configuration data being
authentic, the configuration control circuit reads the
encrypted configuration data from the configuration memory
and stores decrypted configuration data back in the configu-
ration memory. The decryptor circuit is configured to decrypt
the encrypted configuration data read from the configuration
memory into the decrypted configuration data.

Another method of configuring a programmable integrated
circuit (IC) includes inputting a value of a decryption flag to
the programmable IC, inputting configuration data to the
programmable IC, and storing the configuration data in con-
figuration memory of the programmable IC. The configura-
tion memory programs configurable logic of the program-
mable IC. The method determines whether or not the
configuration data is authentic. In response to the configura-
tion data being authentic, the configuration data is read from
the configuration memory. In response to the value of a
decryption flag indicating that the configuration data is
encrypted, the encrypted configuration data is decrypted into
decrypted configuration data, and the decrypted configura-
tion data is stored back in the configuration memory. In
response to the value of a decryption flag indicating that the
configuration data is not encrypted, the configuration data is
stored back in the configuration memory.

Other embodiments will be recognized from consideration
of'the Detailed Description and Claims, which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and advantages of the disclosed embodi-
ments will become apparent upon review of the following
detailed description and upon reference to the drawings, in
which:
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FIG. 1 shows a circuit for authenticating configuration data
prior to decryption;

FIG. 2 is a flowchart of a process for authenticating con-
figuration data prior to decryption;

FIG. 3 shows an example of the format and content of a
configuration bitstream according to an example implemen-
tation;

FIG. 4 shows a flowchart of a detailed process for authen-
ticating configuration data prior to decryption; and

FIG. 5 is a block diagram of an example FPGA.

DETAILED DESCRIPTION

Differential Power Analysis (DPA) attacks on FPGAs
allow the adversary to discover the key stored in battery
backed RAM (BBR) or in the eFUSEs. DPA involves running
statistical analysis on a large set of power supply traces that
are captured during decryption of various sets of cipher text.
Once the key is discovered, the design is no longer confiden-
tial and may be subjected to reverse engineering efforts.

Some security measures prevent attacks that use invalid
configuration data by permanently disabling decryption on a
device after a certain amount of invalid data has been
observed. Permanently disabling a device has a negative
impact on the usability of the device in some applications.

The disclosed approaches for preventing the use of invalid
data in DPA attacks authenticate the configuration data before
it is sent to the decryptor where side-channel information can
be used to recover the key. The authentication of the
encrypted configuration data uses a public-private key algo-
rithm, so that the FPGA does not store a secret key that can be
recovered from side channel attacks. As the encrypted con-
figuration data is being authenticated, it is stored in configu-
ration memory of the FPGA. In response to finding the
encrypted configuration data to be authentic, the encrypted
configuration data is read back from the configuration
memory, decrypted, and stored back in the configuration
memory.

FIG. 1 shows a circuit for authenticating configuration data
prior to decryption. The example circuit is part of a program-
mable IC 100, such as an FPGA. The programmable IC
includes configuration control circuit 102, configuration
memory 104, and programmable resources 106. The configu-
ration control circuit controls the storing of configuration data
in the configuration memory. The state of the configuration
memory controls the functions, interconnections, and input
and output of the programmable resources.

In an example implementation, asymmetric key cryptog-
raphy is used to determine whether or not the encrypted
configuration data is authentic. The input configuration bit-
stream 120 includes a public key, an input signature, an
encrypted header, encrypted configuration data, an encrypted
footer, and a read-decrypt-write (RDW) command. The pub-
lic key and the input signature are used in authenticating the
encrypted header, encrypted configuration data, and the
encrypted footer. The RDW command is used to signal that
the encrypted configuration data can be read back from the
configuration memory, decrypted, and written back to the
configuration memory.

The hash calculation circuit 111 reads the public key from
the input configuration bitstream and calculates a hash value
from the input public key. The hash calculation circuit inputs
the calculated actual hash value of the public key to the
configuration control circuit 102. In an example implemen-
tation, the hash calculation circuit calculates an SHA-3 hash
value. The configuration control circuit 102 compares the
calculated hash value to the expected hash value 122. The
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expected hash value may be stored in an eFUSE register on
the programmable IC. In response to the calculated hash
value matching the expected hash value, the configuration
control circuit continues with the configuration. Otherwise,
the configuration process may be halted.

The configuration control circuit 102 next signals the
authentication circuit 108 to calculate an expected digest
using the input signature and the public key, the input signa-
ture having been previously generated using a private key and
a digest of the encrypted parts of the configuration bitstream.
The encrypted header, encrypted configuration data, and the
encrypted footer are covered by the signature. In an example
implementation, RSA (Rivest-Shamir-Adleman) is used as
the authentication algorithm. Other algorithms would change
resource estimates and configuration times. One such alter-
native would be an elliptic curve cryptographic (ECC) algo-
rithm.

The configuration data following the public key and the
input signature is input to the hash calculation circuit 111, and
the hash calculation circuit calculates the actual digest from
the input configuration data. As the hash calculation circuit is
calculating the actual digest, the configuration control circuit
102 stores the encrypted header in a buffer (not shown),
writes the encrypted configuration data to the configuration
memory 104, and also stores the encrypted footer in a buffer
(not shown). The buffer (not shown) may be a small dedicated
random access memory coupled to the configuration control
circuit for storing the header and footer.

Once input of the configuration bitstream 120 is complete,
the configuration control circuit 102 will have buffered and
stored the encrypted header, encrypted configuration data,
and encrypted footer, the authentication circuit 108 will have
computed the expected digest, and the hash calculation circuit
111 will have computed the actual digest. The expected digest
is input to the configuration control circuit from the authen-
tication circuit, and the actual digest is input to the configu-
ration control circuit from the hash calculation circuit. If the
expected digest matches the actual digest, the encrypted parts
of the configuration bitstream are deemed to be authentic. If
the expected digest does not match the actual digest, configu-
ration of the programmable IC may be aborted.

In response to the RDW command, the configuration con-
trol circuit 102 initiates the decrypting of the buffered
encrypted header and the encrypted configuration stored in
the configuration memory 104. The buffered encrypted
header is provided to the decryptor circuit 110, and the
decryptor circuit uses symmetric key 124 to decrypt the
encrypted header. The header includes commands for setting
up configuration of the programmable IC. The particular
setup commands are particular to the circuit to be imple-
mented on the programmable IC and particular to the type and
class of programmable IC.

In an example implementation key rolling is used for fur-
ther protection. The symmetric key 124 is the initial key,
which may be stored in eFUSEs or in on-chip RAM, and the
initial synthetic initialization vector (SIV) and decryption
length count (DLCs) are read from a plaintext portion of the
configuration bitstream. Subsequent key data sets (key, SIV,
and DLC) are in the ciphertext portion of the configuration
bitstream. Further description of key rolling in a configura-
tion bitstream is described in co-pending patent application
Ser. No. 12/900,805, filed Oct. 8, 2010, entitled, “A Method
and Integrated Circuit for Secure Encryption and Decryp-
tion,” the entire contents of which are incorporated herein by
reference and which is assigned to the assignee of the present
patent application/patent.
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Once the header is decrypted, the configuration control
circuit 102 begins reading encrypted configuration data from
the configuration memory 104 and providing the encrypted
configuration data to the decryptor circuit 110. The decryptor
circuit decrypts the configuration data and returns the
decrypted configuration data to the configuration control cir-
cuit. The configuration control circuit in turn writes the
decrypted configuration data back to the configuration
memory.

In one implementation, the decryption of the encrypted
configuration data proceeds frame-by-frame through the con-
figuration memory. For example, in some FPGAs from XIL.-
INX, Inc., the configuration memory is organized into frames,
and the memory cells in each frame control a particular subset
of programmable resources of the FPGA. The configuration
control circuit reads each frame of encrypted configuration
data and writes the decrypted frame of configuration back to
the same frame in the FPGA.

Once all the encrypted configuration data in the configu-
ration memory has been decrypted and written back to the
configuration memory, the configuration control circuit
decrypts the buffered encrypted footer. In an example imple-
mentation, the footer contains a start-up command, which
causes the programmable IC to begin operating as configured
by the configuration memory.

In another feature of the programmable IC, the rate of the
configuration clock signal is controlled to reduce the time
required to complete configuration. The input of the configu-
ration bitstream 120 may be limited by the clock rate of the
device (not shown) on which the configuration bitstream is
stored (e.g., a flash memory). During input of the configura-
tion bitstream, the configuration control circuit signals the
clock control circuit 126 to output a configuration clock sig-
nal at a rate suitable for the input device. In response to
completing input of the configuration bitstream and the
encrypted configuration data having been stored in the con-
figuration memory, the configuration control circuit signals
the clock control circuit to increase the clock rate to a rate that
is suitable for reading from the configuration memory,
decrypting, and writing back to the configuration memory.

The configuration control circuit may include additional
circuitry (not shown) for performing a cyclic redundancy
check on the decrypted configuration data before storing the
data in the configuration memory. For plaintext configuration
bitstreams, in another implementation the programmable IC
is configured to authenticate the input configuration bitstream
without performing decryption.

FIG. 2 is a flowchart of a process for authenticating con-
figuration data prior to decryption. At block 202 encrypted
configuration data is input to a programmable IC. As the input
encrypted configuration data is stored in configuration
memory of the programmable IC at block 204, the encrypted
configuration data concurrently undergoes authentication at
block 206. In response to finding the input encrypted configu-
ration data to be authentic, decision block 208 directs the
process to block 210 where the encrypted configuration data
is read from the configuration memory. At block 212, the
decrypted configuration data is written back to the configu-
ration memory. If the input encrypted configuration data is
not authentic, decision block 208 directs the process to block
214 where configuration of the programmable IC is stopped.

The process of FIG. 2 shows authentication of the
encrypted configuration data being performed before decryp-
tion. This approach protects against DPA attacks since DPA
attacks may rely on providing inauthentic bitstreams to be
decrypted. Since the disclosed approaches detect that an inau-
thentic bitstream has been input and stop the configuration
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process before any decryption is performed, the DPA attack
will not observe any decryption of the encrypted configura-
tion data with a protected key.

FIG. 3 shows an example of the format and content of a
configuration bitstream 300 according to an example imple-
mentation.

The plain text header 302 contains device-specific setup
commands, a bit that indicates whether or not the bitstream
contains encrypted data (DEC), and bits that select a configu-
ration clock rate.

The public key 304 is 2048 bits, along with 448 bits of
SHA3 padding.

The signature 306 is 2048 bits and covers the SIV 308, the
DLC 310, the configuration header 312, configuration data
314, and the configuration footer 316.

The SIV 308 is 96 bits and is the first initialization vector
that will be used to decrypt the bitstream. For key rolling,
subsequent initialization vectors are embedded in the bit-
stream.

The DLC 310 is 32 bits and indicates the number of words
in the first decryption message for key rolling. Subsequent
Decryption Length Counts are embedded in the bitstream.

If the DEC bit in the plaintext header is set, the encrypted
portion of the configuration bitstream begins with the con-
figuration header 312. The configuration header is 32 words
and includes device-specific commands for setting up the
configuration.

The configuration data 314 is also encrypted if the DEC bit
in the plaintext header is set. In an example implementation,
if a TEST_MODE bit is asserted in the DLC, the configura-
tion control circuit will expect 24 frames of configuration
data. If the TEST_MODE bit is not asserted, then the con-
figuration control circuit will write configuration data to the
configuration memory until there is an indication that the end
of the device has been reached.

The configuration footer 316 includes 160 words of com-
mands for causing the programmable IC to commence oper-
ating and is also encrypted if the DEC bit in the plaintext
header is set. For example, the configuration footer includes a
start-up command, which causes the programmable IC to
begin operating as configured by the configuration memory.

The plain text footer 318 includes further commands, such
as commands for loading slave super logic regions and daisy
chaining FPGAs. The final command in the plaintext footer is
the RDW command, which signals to the configuration con-
trol logic to begin the process of reading encrypted configu-
ration data from the configuration memory, decrypting the
configuration data, and writing the decrypted configuration
data back to the configuration memory. In an example imple-
mentation, the plaintext footer includes a command that
switches the configuration clock signal to a higher frequency
than the frequency at which the encrypted configuration data
was input to the programmable IC.

FIG. 4 shows a flowchart of a detailed process for authen-
ticating configuration data prior to decryption. At block 402,
a configuration bitstream is input, and at block 404, the public
key in the configuration bitstream is authenticated. Authenti-
cation ofthe public key includes calculating a hash value from
the input public key and comparing the calculated hash value
to an expected hash value that is stored in the programmable
IC. In response to the calculated hash value matching the
expected hash value, the public key in the configuration bit-
stream is determined to be authentic, and decision block 406
directs the process to block 410.

At block 410, an input signature is read from the input
configuration bitstream, the input signature in the configura-
tion bitstream having been previously generated using a pri-
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vate key to encrypt a digest of the covered data. Block 418
computes an expected digest of the configuration data using
the public key and input signature in the configuration bit-
stream. The functions of blocks 412, 414, and 416 are per-
formed in parallel with the function of block 419, which
calculates an actual digest from the configuration bitstream.
At block 412, the configuration header from the input con-
figuration bitstream is stored in a buffer on the programmable
IC. Block 414 stores configuration data from the configura-
tion bitstream in configuration memory of the programmable
IC, and block 416 stores the configuration footer from the
configuration bitstream into a buffer on the programmable IC.

Atblock 419, the process calculates the actual digest from
the configuration bitstream. If the expected digest equals the
actual digest, decision block 420 directs the process to block
422. In response to a command in the plaintext footer of the
configuration bitstream, the configuration clock frequency is
increased. The configuration clock rate may be increased
since input from a slower external device is no longer needed.

Atblock 424, the process reads the buffered configuration
header. If the DEC bit from the plaintext header indicates that
the configuration header is encrypted, the configuration is
also decrypted at block 424 using a symmetric key precon-
figured on the programmable IC. Any device-specific setup
configuration commands in the configuration header are also
executed.

The processing of blocks 426, 428, and 430 is performed
for each frame of configuration data in the programmable IC.
Atblock 426, the process reads a frame of configuration data
from the configuration memory of the programmable IC, and
the configuration data is decrypted if the DEC bit from the
plaintext header indicates that the configuration data is
encrypted. At block 428, an integrity check, such as a cyclic
redundancy check, is performed on the configuration data. If
the data is correct, at block 430 the configuration data is stored
back in the same frame of the programmable IC from which
the configuration data was read.

Atblock 432, the buffered configuration footer is read, and
if the DEC bit from the plaintext header indicates that the
configuration footer is encrypted, the footer is also decrypted.
The device-specific commands in the footer may then be
processed.

If either decision block 406 finds the public key to be
inauthentic or decision block 420 finds the input configura-
tion data to be inauthentic, configuration of the program-
mable IC is halted at block 408.

FIG.5is ablock diagram of an example FPGA. FPGAs can
include several different types of programmable logic blocks
in the array. For example, FIG. 5 illustrates an FPGA archi-
tecture (500) that includes a large number of different pro-
grammable tiles including multi-gigabit transceivers (MGTs
501), configurable logic blocks (CLBs 502), random access
memory blocks (BRAMs 503), input/output blocks (IOBs
504), configuration and clocking logic (CONFIG/CLOCKS
505), digital signal processing blocks (DSPs 506), special-
ized input/output blocks (I/O 507), for example, e.g., clock
ports, and other programmable logic 508 such as digital clock
managers, analog-to-digital converters, system monitoring
logic, and so forth. Some FPGAs also include dedicated pro-
cessor blocks (PROC 510) and internal and external recon-
figuration ports (not shown).

In some FPGAs, each programmable tile includes a pro-
grammable interconnect element (INT 511) having standard-
ized connections to and from a corresponding interconnect
element in each adjacent tile. Therefore, the programmable
interconnect elements taken together implement the pro-
grammable interconnect structure for the illustrated FPGA.
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The programmable interconnect element INT 511 also
includes the connections to and from the programmable logic
element within the same tile, as shown by the examples
included at the top of FIG. 5.

For example, a CLLB 502 can include a configurable logic
element CLE 512 that can be programmed to implement user
logic plus a single programmable interconnect element INT
511. ABRAM 503 can include a BRAM logic element (BRL
513) in addition to one or more programmable interconnect
elements. Typically, the number of interconnect elements
included in a tile depends on the width of the tile. In the
pictured FPGA, a BRAM tile has the same width as five
CLBs, but other numbers (e.g., four) can also be used. A DSP
tile 506 can include a DSP logic element (DSPL 514) in
addition to an appropriate number of programmable intercon-
nect elements. An 10B 504 can include, for example, two
instances of an input/output logic element (IOL 515) in addi-
tion to one instance of the programmable interconnect ele-
ment INT 511. As will be clear to those of skill in the art, the
actual I/O pads connected, for example, to the /O logic
element 515 are manufactured using metal layered above the
various illustrated logic blocks, and typically are not confined
to the area of the input/output logic element 515.

In the pictured FPGA, a horizontal area near the center of
the die (shown shaded in FIG. 5) is used for configuration,
clock, and other control logic. Vertical areas 509 extending
from this horizontal area are used to distribute the clocks and
configuration signals across the breadth of the FPGA.

Some FPGAs utilizing the architecture illustrated in FIG. 5
include additional logic blocks that disrupt the regular row
structure making up a large part of the FPGA. The additional
logic blocks can be programmable blocks and/or dedicated
logic. For example, the processor block PROC 510 shown in
FIG. 5 spans several rows of CL.Bs and BRAM:s.

Note that FIG. 5 is intended to illustrate only an exemplary
FPGA architecture. The numbers of logic blocks in a row, the
relative heights of the rows, the number and order of rows, the
types of logic blocks included in the rows, the relative sizes of
the logic blocks, and the interconnect/logic implementations
included at the top of FIG. 5 are purely exemplary. For
example, in an actual FPGA more than one adjacent row of
CLBs is typically included wherever the CLBs appear, to
facilitate the efficient implementation of user logic.

The examples described herein are thought to be applicable
to a variety of systems for protecting against DPA attacks.
Other aspects and embodiments will be apparent to those
skilled in the art from consideration of the specification. The
embodiments may be implemented as one or more processors
configured to execute software, as an application specific
integrated circuit (ASIC), or as a logic on a programmable
logic device, for example. It is intended that the specification
and the illustrated circuits and methods be considered as
examples only, with a true scope of the invention being indi-
cated by the following claims.

What is claimed is:
1. A method of configuring a programmable integrated
circuit (IC), comprising:

inputting encrypted configuration data to the program-
mable IC, wherein the programmable IC includes con-
figurable logic and a configuration memory, and a state
of the configuration memory controls functions of the
configurable logic;

storing the encrypted configuration data in the configura-
tion memory of the programmable IC, wherein the con-
figuration memory programs the configurable logic of
the programmable IC;



US 9,218,505 B1

9

determining whether or not the encrypted configuration

data is authentic;
in response to the encrypted configuration data being
authentic:
reading the encrypted configuration data from the con-
figuration memory;
decrypting the encrypted configuration data into
decrypted configuration data;
storing the decrypted configuration data back in the con-
figuration memory; and
operating the programmable IC having the configurable
logic of the programmable IC programmed by the
decrypted configuration data in the configuration
memory.
2. The method of claim 1, further comprising, in response
to the encrypted configuration data not being authentic, halt-
ing configuration of the programmable IC.
3. The method of claim 1, further comprising:
inputting a key to the programmable IC;
determining whether or not the input key is authentic;
inresponse to the input key being authentic, performing the
storing of the encrypted configuration data in the con-
figuration memory and the determining of whether or
not the encrypted configuration data is authentic; and

in response to the input key not being authentic, halting
configuration of the programmable IC.

4. The method of claim 3, wherein the determining of
whether or not the input key is authentic includes:

storing a hash value of an asymmetric public key in non-

volatile storage within the programmable IC;
computing a hash value from the input key; and
comparing the computed hash value to the stored hash
value of the asymmetric public key.

5. The method of claim 1, wherein the determining whether
or not the encrypted configuration data is authentic uses
asymmetric key cryptography.

6. The method of claim 1, further comprising:

generating a signature of the encrypted configuration data

using a digest of the encrypted configuration data and a
private key;

inputting the signature and a public key to the program-

mable IC;

generating an expected digest by the programmable IC

from the signature and the public key;

generating an actual digest from the input encrypted con-

figuration data; and

comparing the actual digest to the expected digest.

7. The method of claim 1, wherein the decrypting the
encrypted configuration data includes decrypting the
encrypted configuration data using a plurality of keys in the
configuration data.

8. The method of claim 1, further comprising performing a
cyclic redundancy check on the decrypted configuration data
before storing the decrypted configuration data in the con-
figuration memory.

9. The method of claim 1, further comprising:

operating the programmable IC at a first clock rate during

the inputting of the encrypted configuration data, the
storing of the encrypted configuration data, and the
determining whether or not the encrypted configuration
data is authentic; and

operating the programmable IC at a second clock rate

during the reading, decrypting, and storing of the
decrypted configuration data;

wherein the second clock rate is faster than the first clock

rate.
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10. The method of claim 1, wherein:

the encrypted configuration data includes a configuration
header, configuration data for programming program-
mable resources of the programmable IC, and a configu-
ration footer;

the method further includes storing the configuration
header and the configuration footer in a buffer on the
programmable IC; and

the determining whether or not the encrypted configuration
data is authentic includes:

generating a signature using a private key and a digest of
the encrypted configuration data;

inputting the signature and a public key to the program-
mable IC;

generating an expected digest by the programmable IC
from the signature and the public key;

generating an actual digest by the programmable IC
from the encrypted configuration data; and

comparing the actual digest to the expected digest.
11. A circuit, comprising:
a configuration memory;

programmable resources coupled to the configuration
memory, wherein a state of the configuration memory
controls functions of the programmable resources;

a configuration control circuit coupled to the configuration
memory and configured to input a configuration bit-
stream;

an authentication circuit coupled to the configuration con-
trol circuit and configured to input the configuration
bitstream and to calculate an expected digest from a
public key and signature in the configuration bitstream;

a hash calculation circuit coupled to the configuration con-
trol circuit and configured to input the configuration
bitstream and to calculate an actual digest from
encrypted data in the configuration bitstream; and

a decryptor circuit coupled to the configuration control
circuit;

wherein the configuration control circuit is further config-
ured to:

store the encrypted configuration data in the configura-
tion memory;

determine whether or not the encrypted configuration
data is authentic based on the expected digest and the
actual digest; and

in response to the encrypted configuration data being
authentic:

read the encrypted configuration data from the con-
figuration memory; and

store decrypted configuration data back in the con-
figuration memory; and

wherein the decryptor circuit is configured to decrypt the
encrypted configuration data read from the configura-
tion memory into the decrypted configuration data, and
the programmable resources are configured to operate
responsive to the configuration memory as programmed
by the decrypted configuration data.

12. The circuit of claim 11, wherein the configuration
control circuit is further configured to, in response to the
encrypted configuration data not being authentic, halt con-
figuration of the programmable resources of a programmable
integrated circuit (IC).
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13. The circuit of claim 11, wherein:
the hash calculation circuit is further configured to input
the public key and generate a first hash value from the
public key; and
the configuration control circuit is further configured to:
determine whether or not the input key is authentic as a
function of a comparison of the first hash value to a
second hash value;

in response to the input key being authentic, perform the
storing of the encrypted configuration data in the con-
figuration memory and the determining of whether or
not the encrypted configuration data is authentic; and

in response to the input key not being authentic, halt
configuration of the programmable resources of'a pro-
grammable integrated circuit (IC).
14. The circuit of claim 11, wherein the configuration
control circuit is further configured to determine whether or
not the encrypted configuration data is authentic using asym-
metric key cryptography.
15. The circuit of claim 11, wherein:
the signature is generated using a private key; and
the encrypted configuration data includes a configuration
header, configuration data for the programmable
resources of a programmable integrated circuit (IC), and
a configuration footer.
16. The circuit of claim 11, wherein the configuration
control circuit is further configured to decrypt the encrypted
configuration data using a plurality of keys in the configura-
tion data.
17. The circuit of claim 11, wherein the configuration
control circuit is further configured to perform a cyclic redun-
dancy check on the decrypted configuration data before stor-
ing the decrypted configuration data in the configuration
memory.
18. The circuit of claim 11, further comprising:
a clock control circuit coupled to the configuration control
circuit, wherein the clock control circuit, responsive to
the configuration control circuit, is configured to:
operate the circuit at a first clock rate during the input-
ting of the encrypted configuration data, storing of the
encrypted configuration data, and the determining
whether or not the encrypted configuration data is
authentic; and

operate the circuit at a second clock rate during the
reading, decrypting, and storing of the decrypted con-
figuration data;
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wherein the second clock rate is faster than the first clock
rate.
19. The circuit of claim 11, wherein:
the configuration bitstream includes the signature, fol-
lowed by a configuration header, followed by configu-
ration data for the programmable resources, followed by
a configuration footer;
the configuration control circuit is further configured to
store the configuration header and configuration footer
in a buffer; and
the authentication circuit is further configured to generate
the actual digest from the configuration header, the con-
figuration data for the programmable resources, and the
configuration footer.
20. A method of configuring a programmable integrated
circuit (IC), comprising:
inputting a value of a decryption flag to the programmable
IC, wherein the programmable IC includes configurable
logic and a configuration memory, and a state of the
configuration memory controls functions of the config-
urable logic;
inputting configuration data to the programmable IC;
storing the configuration data in the configuration memory
of the programmable IC;
determining whether or not the configuration data is
authentic; and
in response to the configuration data being authentic:
reading the configuration data from the configuration
memory;
in response to the value of a decryption flag indicating
that the configuration data is encrypted:
decrypting the encrypted configuration data into
decrypted configuration data; and
storing the decrypted configuration data back in the
configuration memory;
in response to the value of a decryption flag indicating
that the configuration data is not encrypted, storing
the configuration data back in the configuration
memory; and
operating the programmable IC having the configurable
logic of the programmable IC programmed by the
decrypted configuration data in the configuration
memory.



